arXiv:1602.08029 [math.RT]AbstractReferencesReviewsResources
An algebraic approach to the KZ-functor for rational Cherednik algebras associated with cyclic groups
Published 2016-02-25Version 1
In the case of rational Cherednik algebras associated with cyclic groups, we give an alternative proof that the projective object $P_{\text{KZ}}$ representing the KZ-functor is isomorphic to the $\Delta$-module associated with the coinvariant algebra for a subset of parameter values from which all parameter values can be obtained by integral translations. We also specify the exact parameter values for which this isomorphism occurs. Furthermore, we determine the action of the cyclotomic Hecke algebra on $P_{\text{KZ}}$ for these parameter values, thereby giving a complete algebraic description of the KZ-functor in this case.
Related articles: Most relevant | Search more
arXiv:2408.02485 [math.RT] (Published 2024-08-05)
Categorical Heisenberg action I: rational Cherednik algebras
arXiv:1011.0211 [math.RT] (Published 2010-10-31)
On isomorphisms of certain functors for Cherednik algebras
arXiv:1801.03761 [math.RT] (Published 2018-01-11)
On the Mackey formulas for cyclotomic Hecke algebras and categories O of rational Cherednik algebras