arXiv Analytics

Sign in

arXiv:1602.07125 [cs.CV]AbstractReferencesReviewsResources

Car Type Recognition with Deep Neural Networks

Heikki Huttunen, Fatemeh Shokrollahi Yancheshmeh, Ke Chen

Published 2016-02-23Version 1

In this paper we study automatic recognition of cars of four types: Bus, Truck, Van and Small car. For this problem we consider two data driven frameworks: a deep neural network and a support vector machine using SIFT features. The accuracy of the methods is validated with a database of over 6500 images, and the resulting prediction accuracy is over 97 %. This clearly exceeds the accuracies of earlier studies that use manually engineered feature extraction pipelines.

Comments: Submitted to IEEE Intelligent Vehicles Symposium 2016
Categories: cs.CV
Related articles: Most relevant | Search more
arXiv:1707.07312 [cs.CV] (Published 2017-07-23)
A new take on measuring nutritional density: The feasibility of using a deep neural network to assess commercially-prepared puree concentrations
arXiv:1811.02797 [cs.CV] (Published 2018-11-07)
Deep Neural Networks for ECG-free Cardiac Phase and End-Diastolic Frame Detection on Coronary Angiographies
arXiv:1811.02644 [cs.CV] (Published 2018-10-25)
DeepDPM: Dynamic Population Mapping via Deep Neural Network