arXiv Analytics

Sign in

arXiv:1602.04354 [math.GR]AbstractReferencesReviewsResources

Dimension invariants of outer automorphism groups

Dieter Degrijse, Juan Souto

Published 2016-02-13Version 1

The geometric dimension for proper actions $\underline{\mathrm{gd}}(G)$ of a group $G$ is the minimal dimension of a classifying space for proper actions $\underline{E}G$. We construct for every integer $r\geq 1$, an example of a virtually torsion-free Gromov-hyperbolic group $G$ such that for every group $\Gamma$ which contains $G$ as a finite index normal subgroup, the virtual cohomological dimension $\mathrm{vcd}(\Gamma)$ of $\Gamma $ equals $\underline{\mathrm{gd}}(\Gamma)$ but such that the outer automorphism group $\mathrm{Out}(G)$ is virtually torsion-free, admits a cocompact model for $\underline E\mathrm{Out}(G)$ but nonetheless has $\mathrm{vcd}(\mathrm{Out}(G))\le\underline{\mathrm{gd}}(\mathrm{Out}(G))-r$.

Related articles: Most relevant | Search more
arXiv:1106.3022 [math.GR] (Published 2011-06-15, updated 2011-09-03)
Cohomological invariants and the classifying space for proper actions
arXiv:2101.07101 [math.GR] (Published 2021-01-18)
Commensurations of the outer automorphism group of a universal Coxeter group
arXiv:2212.12122 [math.GR] (Published 2022-12-23)
Random walks and contracting elements III: Outer space and outer automorphism group