arXiv Analytics

Sign in

arXiv:1601.06491 [math.AP]AbstractReferencesReviewsResources

On the $ω$-limit set of a nonlocal differential equation: application of rearrangement theory

Thanh Nam Nguyen

Published 2016-01-25Version 1

We study the $\omega$-limit set of solutions of a nonlocal ordinary differential equation, where the nonlocal term is such that the space integral of the solution is conserved in time. Using the monotone rearrangement theory, we show that the rearranged equation in one space dimension is the same as the original equation in higher space dimensions. In many cases, this property allows us to characterize the $\omega$-limit set for the nonlocal differential equation. More precisely, we prove that the $\omega$-limit set only contains one element.

Related articles: Most relevant | Search more
arXiv:1010.1906 [math.AP] (Published 2010-10-10)
Unique Continuation for Schrödinger Evolutions, with applications to profiles of concentration and traveling waves
arXiv:0905.2224 [math.AP] (Published 2009-05-14, updated 2009-05-20)
A New Multiscale Representation for Shapes and Its Application to Blood Vessel Recovery
arXiv:1011.2911 [math.AP] (Published 2010-11-12)
Five lectures on optimal transportation: Geometry, regularity and applications