arXiv Analytics

Sign in

arXiv:1601.04782 [math.NT]AbstractReferencesReviewsResources

New congruences involving products of two binomial coefficients

Guo-Shuai Mao, Zhi-Wei Sun

Published 2016-01-19Version 1

Let $p>3$ be a prime and let $a$ be a positive integer. We show that if $p\equiv1\pmod 4$ or $a>1$ then $$\sum_{k=0}^{\lfloor\frac34p^a\rfloor}\frac{\binom{2k}k^2}{16^k}\equiv\l(\frac{-1}{p^a}\r)\pmod{p^3}$$ with $(-)$ the Jacobi symbol, which confirms a conjecture of Z.-W. Sun. We also establish the following new congruences: \begin{align*}\sum_{k=0}^{(p-1)/2}\frac{\binom{2k}k\binom{3k}k}{27^k}\equiv&\l(\frac p3\r)\frac{2^p+1}3\pmod{p^2}, \\\sum_{k=0}^{(p-1)/2}\frac{\binom{6k}{3k}\binom{3k}k}{(2k+1)432^k}\equiv&\l(\frac p3\r)\frac{3^p+1}4\pmod{p^2}, \\\sum_{k=0}^{(p-1)/2}\frac{\binom{4k}{2k}\binom{2k}k}{(2k+1)64^k}\equiv&\l(\frac{-1}p\r)2^{p-1}\pmod{p^2}. \end{align*} Note that in 2003 Rodriguez-Villeguez posed conjectures on $$\sum_{k=0}^{p-1}\frac{\binom{2k}k^2}{16^k},\ \sum_{k=0}^{p-1}\frac{\binom{2k}k\binom{3k}k}{27^k},\ \sum_{k=1}^{p-1}\frac{\binom{4k}{2k}\binom{2k}k}{64^k},\ \sum_{k=1}^{p-1}\frac{\binom{6k}{3k}\binom{3k}k}{432^k}$$ modulo $p^2$ which were later proved.

Related articles: Most relevant | Search more
arXiv:1012.3141 [math.NT] (Published 2010-12-14, updated 2014-04-28)
On sums involving products of three binomial coefficients
arXiv:0709.1665 [math.NT] (Published 2007-09-11, updated 2011-06-02)
On some new congruences for binomial coefficients
arXiv:1902.03851 [math.NT] (Published 2019-02-11)
Congruences on sums of $q$-binomial coefficients