arXiv:1512.02476 [cond-mat.dis-nn]AbstractReferencesReviewsResources
Mapping the Current-Current Correlation Function Near a Quantum Critical Point
Published 2015-12-08Version 1
The current-current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson's localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau-insulator or plateau-plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current-current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current-current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.