arXiv Analytics

Sign in

arXiv:1510.00424 [math.CO]AbstractReferencesReviewsResources

Regularity and Planarity of Token Graphs

Walter Carballosa, Ruy Fabila-Monroy, Jesús Leaños, Luis Manuel Rivera

Published 2015-10-01Version 1

Let $G=(V,E)$ be a graph of order $n$ and let $1\leq k< n$ be an integer. The $k$-token graph of $G$ is the graph whose vertices are all the $k$-subsets of $V$, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in $G$. In this paper we characterize precisely, for each value of $k$, which graphs have a regular $k$-token graph and which connected graphs have a planar $k$-token graph.

Comments: 13 pages, 5 figures
Categories: math.CO
Subjects: 05C10, 05C69
Related articles: Most relevant | Search more
arXiv:2309.09041 [math.CO] (Published 2023-09-16)
Some bounds on the Laplacian eigenvalues of token graphs
arXiv:2403.18800 [math.CO] (Published 2024-03-27)
On two algebras of token graphs
arXiv:2207.12336 [math.CO] (Published 2022-07-25, updated 2022-07-28)
Connected ($C_4$,Diamond)-free Graphs Are Uniquely Reconstructible from Their Token Graphs