arXiv Analytics

Sign in

arXiv:1509.06675 [math.CA]AbstractReferencesReviewsResources

On the distance sets of AD-regular sets

Tuomas Orponen

Published 2015-09-22Version 1

I prove that if $K \subset \mathbb{R}^{2}$ is $s$-Ahlfors-David regular with $s \geq 1$, then $$\overline{\dim}_{\mathrm{B}} D(K) = 1,$$ where $D(K) = \{|x - y| : x,y \in K\}$ is the distance set of $K$.

Comments: 9 pages
Categories: math.CA, math.MG
Related articles: Most relevant | Search more
arXiv:1110.6805 [math.CA] (Published 2011-10-31)
On the Mattila-Sjolin theorem for distance sets
arXiv:1802.08297 [math.CA] (Published 2018-02-22)
On the quotient set of the distance set
arXiv:1909.05171 [math.CA] (Published 2019-09-11)
Microlocal decoupling inequalities and the distance problem on Riemannian manifolds