arXiv Analytics

Sign in

arXiv:1509.06638 [math.MG]AbstractReferencesReviewsResources

Quasisymmetric extension on the real line

Vyron Vellis

Published 2015-09-22Version 1

We give a geometric characterization of the sets $E\subset \mathbb{R}$ that satisfy the following property: every monotone quasisymmetric mapping $f: E \to \mathbb{R}$ extends to a quasisymmetric mapping $f:\mathbb{R}\to\mathbb{R}$.

Related articles: Most relevant | Search more
arXiv:1708.03289 [math.MG] (Published 2017-08-10)
Double Bubbles on the Real Line with Log-Convex Density
arXiv:2002.00859 [math.MG] (Published 2020-02-03)
Isometric study of Wasserstein spaces --- the real line
arXiv:math/0411566 [math.MG] (Published 2004-11-25)
A Note on Self-extremal Sets in $L_p(\Om)$ Spaces