arXiv:1509.03589 [math.CA]AbstractReferencesReviewsResources
Inhomogeneous self-similar sets with overlaps
Simon Baker, Jonathan M. Fraser, András Máthé
Published 2015-09-11Version 1
It is known that if the underlying iterated function system satisfies the open set condition, then the upper box dimension of an inhomogeneous self-similar set is the maximum of the upper box dimensions of the homogeneous counterpart and the condensation set. First, we prove that this `expected formula' does not hold in general if there are overlaps in the construction. We demonstrate this via two different types of counterexample: the first is a family of overlapping inhomogeneous self-similar sets based upon Bernoulli convolutions; and the second applies in higher dimensions and makes use of a spectral gap property that holds for certain subgroups of $SO(d)$ for $d\geq 3$. We also obtain new upper bounds for the upper box dimension of an inhomogeneous self-similar set which hold in general. Moreover, our counterexamples demonstrate that these bounds are optimal. In the final section we show that if the \emph{weak separation property} is satisfied, ie. the overlaps are controllable, then the `expected formula' does hold.