arXiv Analytics

Sign in

arXiv:1508.07652 [math.FA]AbstractReferencesReviewsResources

A convexity of functions on convex metric spaces of Takahashi and applications

Ahmed A. Abdelhakim

Published 2015-08-31Version 1

We quickly review and make some comments on the concept of convexity in metric spaces due to Takahashi. Then we introduce a concept of convex structure based convexity to functions on these spaces and refer to it as $W-$convexity. $W-$convex functions generalize convex functions on linear spaces. We discuss illustrative examples of (strict) $ W-$convex functions and dedicate the major part of this paper to proving a variety of properties that make them fit in very well with the classical theory of convex analysis. Finally, we apply some of our results to the metric projection problem and fixed point theory.

Related articles: Most relevant | Search more
arXiv:math/0307285 [math.FA] (Published 2003-07-21, updated 2003-07-23)
On ideals of polynomials and their applications
arXiv:1005.5140 [math.FA] (Published 2010-05-27)
A T(1)-Theorem in relation to a semigroup of operators and applications to new paraproducts
arXiv:1104.1709 [math.FA] (Published 2011-04-09)
Variational splines on Riemannian manifolds with applications to integral geometry