arXiv Analytics

Sign in

arXiv:1508.06573 [math.GT]AbstractReferencesReviewsResources

Quantum Enhancements and Biquandle Brackets

Sam Nelson, Michael E. Orrison, Veronica Rivera

Published 2015-08-26Version 1

We introduce a new class of quantum enhancements we call biquandle brackets, which are customized skein invariants for biquandle colored links.Quantum enhancements of biquandle counting invariants form a class of knot and link invariants that includes biquandle cocycle invariants and skein invariants such as the HOMFLY-PT polynomial as special cases, providing an explicit unification of these apparently unrelated types of invariants. We provide examples demonstrating that the new invariants are not determined by the biquandle counting invariant, the knot quandle, the knot group or the traditional skein invariants.

Related articles: Most relevant | Search more
arXiv:1805.12230 [math.GT] (Published 2018-05-30)
A Survey of Quantum Enhancements
arXiv:1909.00262 [math.GT] (Published 2019-08-31)
Biquandle Brackets and Knotoids
arXiv:1907.03011 [math.GT] (Published 2019-07-05)
Quantum Enhancements via Tribracket Brackets