arXiv:1508.04182 [math.RT]AbstractReferencesReviewsResources
Categorifying the tensor product of the Kirillov-Reshetikhin crystal $B^{1,1}$ and a fundamental crystal
Published 2015-08-18Version 1
We use Khovanov-Lauda-Rouquier (KLR) algebras to categorify a crystal isomorphism between a fundamental crystal and the tensor product of a Kirillov-Reshetikhin crystal and another fundamental crystal, all in affine type. The nodes of the Kirillov-Reshetikhin crystal correspond to a family of "trivial" modules. The nodes of the fundamental crystal correspond to simple modules of the corresponding cyclotomic KLR algebra. The crystal operators correspond to socle of restriction and behave compatibly with the rule for tensor product of crystal graphs.
Comments: 58 pages, 4 figures, 4 tables
Subjects: 05E10
Related articles: Most relevant | Search more
arXiv:1508.03802 [math.RT] (Published 2015-08-16)
Categorifying the tensor product of a level 1 highest weight and perfect crystal in type A
Posets, Tensor Products and Schur positivity
arXiv:1210.6907 [math.RT] (Published 2012-10-25)
Dimensions of components of tensor products of the linear groups representations with applications to Beurling-Fourier algebras