arXiv Analytics

Sign in

arXiv:1507.02047 [math.RT]AbstractReferencesReviewsResources

A decomposition rule for certain tensor product representations of the symmetric groups

Takahiro Hayashi

Published 2015-07-08Version 1

In this paper, we give a combinatorial rule to calculate the decomposition of the tensor product (Kronecker product) of two irreducible complex representations of the symmetric group ${\mathfrak S}_n$, when one of the representations corresponds to a hook $(n-m, 1^m)$.

Comments: 25 pages
Journal: Journal of Algebra 434 (2015) 46-64
Categories: math.RT, math.CO
Subjects: 05E10, 20C30
Related articles: Most relevant | Search more
arXiv:math/0511043 [math.RT] (Published 2005-11-02, updated 2005-11-30)
A note on the Grothendieck ring of the symmetric group
arXiv:math/0508162 [math.RT] (Published 2005-08-09, updated 2006-03-02)
Bases for certain cohomology representations of the symmetric group
arXiv:0811.3544 [math.RT] (Published 2008-11-21)
The complexity of certain Specht modules for the symmetric group