arXiv Analytics

Sign in

arXiv:1506.08026 [math.FA]AbstractReferencesReviewsResources

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak

Published 2015-06-26Version 1

In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$

Related articles: Most relevant | Search more
arXiv:1908.10183 [math.FA] (Published 2019-08-27)
A note on Lusin-type approximation of Sobolev functions on Gaussian spaces
arXiv:2207.02488 [math.FA] (Published 2022-07-06)
A characterization of BV and Sobolev functions via nonlocal functionals in metric spaces
arXiv:1607.01660 [math.FA] (Published 2016-07-06)
Whitney-type extension theorems for jets generated by Sobolev functions. I