arXiv:1506.06472 [cs.LG]AbstractReferencesReviewsResources
The Ebb and Flow of Deep Learning: a Theory of Local Learning
Published 2015-06-22Version 1
In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules must first define the nature of the local variables, and then the functional form that ties them together into each learning rule. We consider polynomial local learning rules and analyze their behavior and capabilities in both linear and non-linear networks. As a byproduct, this framework enables also the discovery of new learning rules as well as important relationships between learning rules and group symmetries. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is propagated to the deep layers through a backward channel. The nature of the propagated information about the targets, and the backward channel through which this information is propagated, partition the space of learning algorithms. For any learning algorithm, the capacity of the backward channel can be defined as the number of bits provided about the gradient per weight, divided by the number of required operations per weight. We estimate the capacity associated with several learning algorithms and show that backpropagation outperforms them and achieves the maximum possible capacity. The theory clarifies the concept of Hebbian learning, what is learnable by Hebbian learning, and explains the sparsity of the space of learning rules discovered so far.