arXiv:1506.03107 [math.RT]AbstractReferencesReviewsResources
The Capelli problem for $\mathfrak{gl}(m|n)$ and the spectrum of invariant differential operators
Siddhartha Sahi, Hadi Salmasian
Published 2015-06-09Version 1
The "Capelli problem" for the symmetric pairs $(\mathfrak{gl}\times \mathfrak{gl},\mathfrak{gl})$ $(\mathfrak{gl},\mathfrak{o})$, and $(\mathfrak{gl},\mathfrak{sp})$ is closely related to the theory of Jack polynomials and shifted Jack polynomials for special values of the parameter. In this paper, we extend this connection to the Lie superalgebra setting, namely to the supersymmetric pairs $(\mathfrak{g},\mathfrak{g}):=(\mathfrak{gl}(m|2n),\mathfrak{osp}(m|2n))$ and $(\mathfrak{gl}(m|n)\times\mathfrak{gl}(m|n),\mathfrak{gl}(m|n))$, acting on $W:=S^2(\mathbb C^{m|2n})$ and $\mathbb C^{m|n}\otimes(\mathbb C^{m|n})^*$. We also give an affirmative answer to the abstract Capelli problem for these cases.