arXiv Analytics

Sign in

arXiv:1506.03107 [math.RT]AbstractReferencesReviewsResources

The Capelli problem for $\mathfrak{gl}(m|n)$ and the spectrum of invariant differential operators

Siddhartha Sahi, Hadi Salmasian

Published 2015-06-09Version 1

The "Capelli problem" for the symmetric pairs $(\mathfrak{gl}\times \mathfrak{gl},\mathfrak{gl})$ $(\mathfrak{gl},\mathfrak{o})$, and $(\mathfrak{gl},\mathfrak{sp})$ is closely related to the theory of Jack polynomials and shifted Jack polynomials for special values of the parameter. In this paper, we extend this connection to the Lie superalgebra setting, namely to the supersymmetric pairs $(\mathfrak{g},\mathfrak{g}):=(\mathfrak{gl}(m|2n),\mathfrak{osp}(m|2n))$ and $(\mathfrak{gl}(m|n)\times\mathfrak{gl}(m|n),\mathfrak{gl}(m|n))$, acting on $W:=S^2(\mathbb C^{m|2n})$ and $\mathbb C^{m|n}\otimes(\mathbb C^{m|n})^*$. We also give an affirmative answer to the abstract Capelli problem for these cases.

Related articles: Most relevant | Search more
arXiv:1912.06488 [math.RT] (Published 2019-12-13)
Polynomial Representations of the Lie Superalgebra osp(1|2n)
arXiv:math/0207024 [math.RT] (Published 2002-07-02, updated 2002-09-10)
Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q(n)
arXiv:math/0203011 [math.RT] (Published 2002-03-01, updated 2002-09-18)
Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n)