arXiv:1506.01867 [math.NT]AbstractReferencesReviewsResources
Character analogues of certain Hardy-Berndt sums
Published 2015-06-05Version 1
In this paper we consider transformation formulas for \[ B\left( z,s:\chi\right) =\sum\limits_{m=1}^{\infty}\sum\limits_{n=0} ^{\infty}\chi(m)\chi(2n+1)\left( 2n+1\right) ^{s-1}e^{\pi im(2n+1)z/k}. \] We derive reciprocity theorems for the sums arising in these transformation formulas and investigate certain properties of them. With the help of the character analogues of the Euler--Maclaurin summation formula we establish integral representations for the Hardy-Berndt character sums $s_{3,p}\left( d,c:\chi\right) $ and $s_{4,p}\left( d,c:\chi\right) $.
Journal: International Journal of Number Theory, 2014, Vol. 10, No. 03, 737-762
Categories: math.NT
Keywords: character analogues, hardy-berndt sums, transformation formulas, hardy-berndt character sums, euler-maclaurin summation formula
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1710.05001 [math.NT] (Published 2017-10-13)
Transformation formulas of a character analogue of $\logθ_{2}(z)$
arXiv:1412.7363 [math.NT] (Published 2014-12-23)
On reciprocity formula of character Dedekind sums and the integral of products of Bernoulli polynomials
Transformation formulas for supercongruences involving binomial coefficients