arXiv:1506.01711 [astro-ph.GA]AbstractReferencesReviewsResources
A stochastic model and Monte Carlo algorithm for fluctuation-induced H$_2$ formation on the surface of interstellar dust grains
Published 2015-06-04Version 1
A stochastic algorithm for simulation of fluctuation-induced kinetics of H$_2$ formation on grain surfaces is suggested as a generalization of the technique developed in our recent studies where this method was developed to describe the annihilation of spatially separate electrons and holes in a disordered semiconductor. The stochastic model is based on the spatially inhomogeneous, nonlinear integro-differential Smoluchowski equations with random source term. In this paper we derive the general system of Smoluchowski type equations for the formation of H$_2$ from two hydrogen atoms on the surface of interstellar dust grains with physisorption and chemisorption sites. We focus in this study on the spatial distribution, and numerically investigate the segregation in the case of a source with a continuous generation in time and randomly distributed in space. The stochastic particle method presented is based on a probabilistic interpretation of the underlying process as a stochastic Markov process of interacting particle system in discrete but randomly progressed time instances. The segregation is analyzed through the correlation analysis of the vector random field of concentrations which appears to be isotropic in space and stationary in time.