arXiv Analytics

Sign in

arXiv:1506.01042 [math.CO]AbstractReferencesReviewsResources

A Winning Strategy for the Game of Antonim

Zachary Silbernick, Robert Campbell

Published 2015-06-01Version 1

The game of Antonim is a variant of the game Nim, with the additional rule that heaps are not allowed to be the same size. A winning strategy for three heap Antonim has been solved. We will discuss the solution to three-heap Antonim and generalize this theory to an arbitrary number of heaps.

Comments: 6 pages, 2 tables, and presented at MathFest 2013 and MAA NCS Sectional Meeting Fall 2013
Categories: math.CO
Subjects: 91A46
Related articles: Most relevant | Search more
arXiv:1108.1239 [math.CO] (Published 2011-08-05, updated 2011-08-09)
Winning strategies for aperiodic subtraction games
arXiv:1403.6154 [math.CO] (Published 2014-03-24)
Winning Strategies in Multimove Chess (i,j)
arXiv:1702.02723 [math.CO] (Published 2017-02-09)
Enumeration of Tree-like Maps with Arbitrary Number of Vertices