arXiv Analytics

Sign in

arXiv:1505.06479 [math.CA]AbstractReferencesReviewsResources

Cancellation for the multilinear Hilbert transform

Terence Tao

Published 2015-05-24Version 1

For any natural number $k$, consider the $k$-linear Hilbert transform $$ H_k( f_1,\dots,f_k )(x) := \operatorname{p.v.} \int_{\bf R} f_1(x+t) \dots f_k(x+kt) \frac{dt}{t}$$ for test functions $f_1,\dots,f_k: {\bf R} \to {\bf C}$. It is conjectured that $H_k$ maps $L^{p_1}({\bf R}) \times \dots \times L^{p_k}({\bf R}) \to L^p({\bf R})$ whenever $1 < p_1,\dots,p_k,p < \infty$ and $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_k}$. This is proven for $k=1,2$, but remains open for larger $k$. In this paper, we consider the truncated operators $$ H_{k,r,R}( f_1,\dots,f_k )(x) := \int_{r \leq |t| \leq R} f_1(x+t) \dots f_k(x+kt) \frac{dt}{t}$$ for $R > r > 0$. The above conjecture is equivalent to the uniform boundedness of $\| H_{k,r,R} \|_{L^{p_1}({\bf R}) \times \dots \times L^{p_k}({\bf R}) \to L^p({\bf R})}$ in $r,R$, whereas the Minkowski and H\"older inequalities give the trivial upper bound of $2 \log \frac{R}{r}$ for this quantity. By using the arithmetic regularity and counting lemmas of Green and the author, we improve the trivial upper bound on $\| H_{k,r,R} \|_{L^{p_1}({\bf R}) \times \dots \times L^{p_k}({\bf R}) \to L^p({\bf R})}$ slightly to $o( \log \frac{R}{r} )$ in the limit $\frac{R}{r} \to \infty$ for any admissible choice of $k$ and $p_1,\dots,p_k,p$. This establishes some cancellation in the $k$-linear Hilbert transform $T$, but not enough to establish its boundedness in $L^p$ spaces.

Related articles: Most relevant | Search more
arXiv:1507.02436 [math.CA] (Published 2015-07-09)
Cancellation for the simplex Hilbert transform
arXiv:1107.4731 [math.CA] (Published 2011-07-24)
A New Formula for the Natural Logarithm of a Natural Number
arXiv:1307.6399 [math.CA] (Published 2013-07-24, updated 2014-07-02)
Self similar sets, entropy and additive combinatorics