arXiv:1505.03938 [math.PR]AbstractReferencesReviewsResources
SPDEs with two reflecting walls and two singular drifts
Published 2015-05-15Version 1
We study SPDEs with two reflecting walls $\Lambda^1$, $\Lambda^2$ and two singular drifts $\frac{c_1}{(X-\Lambda^1)^{\vartheta}}$, $\frac{c_2}{(\Lambda^2-X)^{\vartheta}}$, driven by space-time white noise. First, we establish the existence and uniqueness of the solutions $X$ for $\vartheta\geq 0$. Second, we obtain the following pathwise properties of the solutions $X$. If $\vartheta>3$, then a.s. $\Lambda^1<X<\Lambda^2$ for all $t\geq0$; If $0<\vartheta<3$, then $X$ hits $\Lambda^1$ or $\Lambda^2$ with positive probability in finite time. Thus $\vartheta=3$ is the critical parameter for $X$ to hit reflecting walls.
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:math/9902126 [math.PR] (Published 1999-02-22)
The Critical Parameter for the Heat Equation with a Noise Term to Blow Up in Finite Time
arXiv:1806.04739 [math.PR] (Published 2018-06-12)
Stefan Problems for Reflected SPDEs Driven by Space-Time White Noise
arXiv:1806.00564 [math.PR] (Published 2018-06-02)
Paracontrolled quasi-geostrophic equation with space-time white noise