arXiv Analytics

Sign in

arXiv:1504.00575 [physics.flu-dyn]AbstractReferencesReviewsResources

Spontaneous stochasticity of velocity in turbulence models

Alexei A. Mailybaev

Published 2015-04-02Version 1

We analyze the phenomenon of spontaneous stochasticity in fluid dynamics formulated as the nonuniqueness of solutions resulting from viscosity at infinitesimal scales acting through intermediate on large scales of the flow. We study the finite-time onset of spontaneous stochasticity in a real version of the GOY shell model of turbulence. This model allows high-accuracy numerical simulations for a wide range of scales (up to ten orders of magnitude) and demonstrates non-chaotic dynamics, but leads to an infinite number of solutions in the vanishing viscosity limit after the blowup time. Thus, the spontaneous stochasticity phenomenon is clearly distinguished from the chaotic behavior in turbulent flows. We provide the numerical and theoretical description of the system dynamics at all stages. This includes the asymptotic analysis before and after the blowup leading to universal (periodic and quasi-periodic) renormalized solutions, followed by nonunique stationary states at large times.

Related articles: Most relevant | Search more
arXiv:2409.03042 [physics.flu-dyn] (Published 2024-09-04)
Parameter Analysis in Continuous Data Assimilation for Various Turbulence Models
arXiv:2310.09895 [physics.flu-dyn] (Published 2023-10-15)
A priori tests of turbulence models for compressible flows
arXiv:1804.06273 [physics.flu-dyn] (Published 2018-04-17)
Equivalence of Non-Equilibrium Ensembles in Turbulence Models