arXiv:1503.06947 [math.GR]AbstractReferencesReviewsResources
Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups
Duong Hoang Dung, Christopher Voll
Published 2015-03-24Version 1
Let $G$ be a finitely generated torsion-free nilpotent group. The representation zeta function $\zeta_G(s)$ of $G$ enumerates twist isoclasses of finite-dimensional irreducible complex representations of $G$. We prove that $\zeta_G(s)$ has rational abscissa of convergence $a(G)$ and may be meromorphically continued to the left of $a(G)$ and that, on the line $\{s\in\mathbb{C} \mid \textrm{Re}(s) = a(G)\}$, the continued function is holomorphic except for a pole at $s=a(G)$. A Tauberian theorem yields a precise asymptotic result on the representation growth of $G$ in terms of the position and order of this pole. We obtain these results as a consequence of a more general result establishing uniform analytic properties of representation zeta functions of finitely generated nilpotent groups of the form $\mathbf{G}(\mathcal{O})$, where $\mathbf{G}$ is a unipotent group scheme defined in terms of a nilpotent Lie lattice over the ring $\mathcal{O}$ of integers of a number field. This allows us to show, in particular, that the abscissae of convergence of the representation zeta functions of such groups and their pole orders are invariants of $\mathbf{G}$, independent of $\mathcal{O}$.