arXiv:1503.02749 [cond-mat.stat-mech]AbstractReferencesReviewsResources
Aggregation Driven by a Localized Source
Published 2015-03-10Version 1
We study aggregation driven by a localized source of monomers. The densities become stationary and have algebraic tails far away from the source. We show that in a model with mass-independent reaction rates and diffusion coefficients, the density of monomers decays as $r^{-\beta(d)}$ in $d$ dimensions. The decay exponent has irrational values in physically relevant dimensions: $\beta(3)=(\sqrt{17}+1)/2$ and $\beta(2)=\sqrt{8}$. We also study Brownian coagulation with a localized source and establish the behavior of the total cluster density and the total number of of clusters in the system. The latter quantity exhibits a logarithmic growth with time.
Comments: 9 pages
Categories: cond-mat.stat-mech, cond-mat.soft
Related articles:
Symmetric Exclusion Process with a Localized Source
Reaction-Diffusion Process Driven by a Localized Source: First Passage Properties