arXiv Analytics

Sign in

arXiv:1502.07378 [math.AG]AbstractReferencesReviewsResources

Moduli of nodal curves on K3 surfaces

Ciro Ciliberto, Flaminio Flamini, Concettina Galati, Andreas Leopold Knutsen

Published 2015-02-25Version 1

We consider modular properties of nodal curves on general $K3$ surfaces. Let $\mathcal{K}_p$ be the moduli space of primitively polarized $K3$ surfaces $(S,L)$ of genus $p\geqslant 3$ and $\mathcal{V}_{p,m,\delta}\to \mathcal{K}_p$ be the universal Severi variety of $\delta$--nodal irreducible curves in $|mL|$ on $(S,L)\in \mathcal{K}_p$. We find conditions on $p, m,\delta$ for the existence of an irreducible component $\mathcal{V}$ of $\mathcal{V}_{p,m,\delta}$ on which the moduli map $\psi: \mathcal{V}\to \overline{{\rm M}}_g$ (with $g= m^2 (p -1) + 1-\delta$) has generically maximal rank differential. Our results, which leave only finitely many cases unsolved and are optimal for $m\geqslant 5$ (except for very low values of $p$), are summarized in Theorem 1.1 in the introduction.

Comments: 20 pages, 4 figures. Comments are very welcome!
Categories: math.AG
Subjects: 14H10, 14B07, 14D06, 14D23, 14J28
Related articles: Most relevant | Search more
arXiv:1010.5906 [math.AG] (Published 2010-10-28, updated 2011-12-19)
Degenerations of K3 Surfaces of Degree Two
arXiv:math/0209297 [math.AG] (Published 2002-09-23)
Pillow Degenerations of K3 Surfaces
arXiv:1202.1066 [math.AG] (Published 2012-02-06, updated 2013-03-05)
Two lectures on the arithmetic of K3 surfaces