arXiv:1502.06999 [math.DS]AbstractReferencesReviewsResources
Isomorphic extensions and applications
Tomasz Downarowicz, Eli Glasner
Published 2015-02-24Version 1
If $\pi:(X,T)\to(Z,S)$ is a topological factor map between uniquely ergodic topological dynamical systems, then $(X,T)$ is called an isomorphic extension of $(Z,S)$ if $\pi$ is also a measure-theoretic isomorphism. We consider the case when the systems are minimal and we pay special attention to equicontinuous $(Z,S)$. We first establish a characterization of this type of isomorphic extensions in terms of mean equicontinuity, and then show that an isomorphic extension need not be almost one-to-one, answering questions of Li, Tu and Ye.
Comments: 16 pages
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:1201.5510 [math.DS] (Published 2012-01-26)
Group Actions on Monotone Skew-Product Semiflows with Applications
Multiple ergodic averages for three polynomials and applications
arXiv:1111.0278 [math.DS] (Published 2011-11-01)
Quasi-potentials and regularization of currents, and applications