arXiv Analytics

Sign in

arXiv:1502.01535 [math.FA]AbstractReferencesReviewsResources

On measuring unboundedness of the $H^\infty$-calculus for generators of analytic semigroups

Felix Schwenninger

Published 2015-02-05Version 1

We investigate the boundedness of the $H^\infty$-calculus by estimating the bound $b(\varepsilon)$ of the mapping $H^{\infty}\rightarrow \mathcal{B}(X)$: $f\mapsto f(A)T(\varepsilon)$ for $\varepsilon$ near zero. Here, $-A$ generates the analytic semigroup $T$ and $H^{\infty}$ is the space of bounded analytic functions on a domain strictly containing the spectrum of $A$. We show that $b(\varepsilon)=\mathcal{O}(|\log\varepsilon|)$ in general, whereas $b(\varepsilon)=\mathcal{O}(1)$ for bounded calculi. This generalizes a result by Vitse and complements work by Haase and Rozendaal for non-analytic semigroups. We discuss the sharpness of our bounds and show that single square function estimates yield $b(\varepsilon)=\mathcal{O}(\sqrt{|\log\varepsilon|})$.

Related articles: Most relevant | Search more
arXiv:2403.16947 [math.FA] (Published 2024-03-25, updated 2024-05-15)
$M$-ideals in $H^\infty(\mathbb{D})$
arXiv:2109.10125 [math.FA] (Published 2021-09-21)
A Bishop-Phelps-Bollobás theorem for bounded analytic functions
arXiv:1602.05729 [math.FA] (Published 2016-02-18)
Invariance Under Bounded Analytic Functions