arXiv Analytics

Sign in

arXiv:1501.07745 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Spherical model of growing interfaces

Malte Henkel, Xavier Durang

Published 2015-01-30Version 1

Building on an analogy between the ageing behaviour of magnetic systems and growing interfaces, the Arcetri model, a new exactly solvable model for growing interfaces is introduced, which shares many properties with the kinetic spherical model. The long-time behaviour of the interface width and of the two-time correlators and responses is analysed. For all dimensions $d\ne 2$, universal characteristics distinguish the Arcetri model from the Edwards-Wilkinson model, although for $d>2$ all stationary and non-equilibrium exponents are the same. For $d=1$ dimensions, the Arcetri model is equivalent to the $p=2$ spherical spin glass. For $2<d<4$ dimensions, its relaxation properties are related to the ones of a particle-reaction model, namely a bosonic variant of the diffusive pair-contact process. The global persistence exponent is also derived.

Related articles: Most relevant | Search more
arXiv:cond-mat/0212363 (Published 2002-12-16)
On Ising and dimer models in two and three dimensions
arXiv:cond-mat/9904176 (Published 1999-04-13)
Optimal Path in Two and Three Dimensions
arXiv:cond-mat/9702249 (Published 1997-02-27, updated 1998-09-21)
Comparison of rigidity and connectivity percolation in two dimensions