arXiv Analytics

Sign in

arXiv:1501.07320 [cs.LG]AbstractReferencesReviewsResources

Tensor Factorization via Matrix Factorization

Volodymyr Kuleshov, Arun Tejasvi Chaganty, Percy Liang

Published 2015-01-29Version 1

Tensor factorization arises in many machine learning applications, such knowledge base modeling and parameter estimation in latent variable models. However, numerical methods for tensor factorization have not reached the level of maturity of matrix factorization methods. In this paper, we propose a new method for CP tensor factorization that uses random projections to reduce the problem to simultaneous matrix diagonalization. Our method is conceptually simple and also applies to non-orthogonal and asymmetric tensors of arbitrary order. We prove that a small number random projections essentially preserves the spectral information in the tensor, allowing us to remove the dependence on the eigengap that plagued earlier tensor-to-matrix reductions. Experimentally, our method outperforms existing tensor factorization methods on both simulated data and two real datasets.

Comments: Appearing in Proceedings of the 18 th International Conference on Artificial Intelligence and Statistics (AISTATS) 2015, San Diego, CA, USA. JMLR: W&CP volume 38
Categories: cs.LG, stat.ML
Related articles: Most relevant | Search more
arXiv:2310.12688 [cs.LG] (Published 2023-10-19)
Compression of Recurrent Neural Networks using Matrix Factorization
arXiv:1307.0803 [cs.LG] (Published 2013-07-02)
Data Fusion by Matrix Factorization
arXiv:1501.00358 [cs.LG] (Published 2015-01-02)
Comprehend DeepWalk as Matrix Factorization