arXiv Analytics

Sign in

arXiv:1501.03250 [math.PR]AbstractReferencesReviewsResources

An elementary proof of convergence to the mean-field equations for an epidemic model

Benjamin Armbruster, Ekkehard Beck

Published 2015-01-14Version 1

It is common to use a compartmental, fluid model described by a system of ordinary differential equations (ODEs) to model disease spread. In addition to their simplicity, these models are also the mean-field approximations of more accurate stochastic models of disease spread on contact networks. For the simplest case of a stochastic susceptible-infected-susceptible (SIS) process (infection with recovery) on a complete network, it has been shown that the fraction of infected nodes converges to the mean-field ODE as the number of nodes increases. However the proofs are not simple, requiring sophisticated probability, partial differential equations (PDE), or infinite systems of ODEs. We provide a short proof in this case for convergence in mean-square on finite time intervals using a system of two ODEs and a moment inequality.

Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1107.2543 [math.PR] (Published 2011-07-13, updated 2015-08-31)
Convergence in law for the branching random walk seen from its tip
arXiv:1205.2682 [math.PR] (Published 2012-05-11, updated 2012-10-05)
Convergence in total variation on Wiener chaos