arXiv:1501.01159 [math.GT]AbstractReferencesReviewsResources
Seifert surgery on knots via Reidemeister torsion and Casson-Walker-Lescop invariant II
Teruhisa Kadokami, Noriko Maruyama, Tsuyoshi Sakai
Published 2015-01-06Version 1
For a knot $K$ with $\Delta_K(t)\doteq t^2-3t+1$ in a homology $3$-sphere, let $M$ be the result of $2/q$-surgery on $K$. We show that an appropriate assumption on the Reidemeister torsion of the universal abelian covering of $M$ implies $q=\pm 1$, if $M$ is a Seifert fibered space.
Comments: 6 pages, 1 figure
Categories: math.GT
Related articles: Most relevant | Search more
arXiv:1408.5356 [math.GT] (Published 2014-08-22)
Seifert surgery on knots via Reidemeister torsion and Casson-Walker-Lescop invariant
arXiv:1708.09802 [math.GT] (Published 2017-08-31)
Seifert surgery on knots via Reidemeister torsion and Casson-Walker-Lescop invariant III
arXiv:math/0402155 [math.GT] (Published 2004-02-10)
The Casson-Walker-Lescop invariant of periodic three-manifolds