arXiv Analytics

Sign in

arXiv:1412.7408 [math.CO]AbstractReferencesReviewsResources

The Kazhdan-Lusztig polynomial of a matroid

Ben Elias, Nicholas Proudfoot, Max Wakefield

Published 2014-12-23Version 1

We associate to every matroid M a polynomial with integer coefficients, which we call the Kazhdan-Lusztig polynomial of M, in analogy with Kazhdan-Lusztig polynomials in representation theory. We conjecture that the coefficients are always non-negative, and we prove this conjecture for representable matroids by interpreting our polynomials as intersection cohomology Poincare polynomials. We also introduce a q-deformation of the Mobius algebra of M, and use our polynomials to define a special basis for this deformation, analogous to the canonical basis of the Hecke algebra. We conjecture that the structure coefficients for multiplication in this special basis are non-negative, and we verify this conjecture in numerous examples.

Related articles: Most relevant | Search more
arXiv:math/0009230 [math.CO] (Published 2000-09-26)
The conjecture cr(C_m\times C_n)=(m-2)n is true for all but finitely many n, for each m
arXiv:math/0508537 [math.CO] (Published 2005-08-26)
On a conjecture of Widom
arXiv:math/0610977 [math.CO] (Published 2006-10-31)
New results related to a conjecture of Manickam and Singhi