arXiv:1412.5614 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Giant negative magnetoresistance driven by spin-orbit coupling at the LAO/STO interface
M. Diez, A. M. R. V. L. Monteiro, G. Mattoni, E. Cobanera, T. Hyart, E. Mulazimoglu, N. Bovenzi, C. W. J. Beenakker, A. D. Caviglia
Published 2014-12-17Version 1
The LAO/STO interface hosts a two-dimensional electron system that is unusually sensitive to the application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative magnetoresistance (dropping by 70\%), attributed to a magnetic-field induced transition between interacting phases of conduction electrons with Kondo-screened magnetic impurities. Here we report on experiments over a broad temperature range, showing the persistence of the magnetoresistance up to the 20~K range --- indicative of a single-particle mechanism. Working in the framework of semiclassical Boltzmann transport theory we demonstrate that the combination of spin-orbit coupling and scattering from finite-range impurities can explain the observed magnitude of the negative magnetoresistance, as well as the temperature and electron density dependence.