arXiv Analytics

Sign in

arXiv:1410.1281 [math.PR]AbstractReferencesReviewsResources

On the phase transition in random simplicial complexes

Nathan Linial, Yuval Peled

Published 2014-10-06Version 1

It is well-known that the $G(n,p)$ model of random graphs undergoes a dramatic change around $p=\frac 1n$. It is here that the random graph is, almost surely, no longer a forest, and here it first acquires a giant (i.e., order $\Omega(n)$) connected component. Several years ago, Linial and Meshulam have introduced the $X_d(n,p)$ model, a probability space of $n$-vertex $d$-dimensional simplicial complexes, where $X_1(n,p)$ coincides with $G(n,p)$. Within this model we prove a natural $d$-dimensional analog of these graph theoretic phenomena. Specifically, we determine the exact threshold for the nonvanishing of the real $d$-th homology of complexes from $X_d(n,p)$. We also compute the real Betti numbers of $X_d(n,p)$ for $p=c/n$. Finally, we establish the emergence of giant shadow at this threshold. (For $d=1$ a giant shadow and a giant component are equivalent). Unlike the case for graphs, for $d\ge 2$ the emergence of the giant shadow is a first order phase transition.

Related articles: Most relevant | Search more
arXiv:1910.12715 [math.PR] (Published 2019-10-28)
Dynamical Models for Random Simplicial Complexes
arXiv:1011.1567 [math.PR] (Published 2010-11-06, updated 2013-10-16)
A first order phase transition in the threshold-$θ\ge 2$ contact process on random $r$-regular graphs and $r$-trees
arXiv:1509.02034 [math.PR] (Published 2015-09-07)
Eigenvalue confinement and spectral gap for random simplicial complexes