arXiv:1409.8479 [math.AP]AbstractReferencesReviewsResources
A generalized porous medium equation related to some singular quasilinear problems
Published 2014-09-30Version 1
In this paper we study existence and nonexistence of solutions for a Dirichlet boundary value problem whose model is $$ \begin{cases} -\sum_{m=1}^{\infty} a_m \Delta u^m= f&\text{in}\ \Omega \newline u=0 & \text{on}\ \partial\Omega\,, \end{cases} $$ where $\Omega$ is a bounded domain of $\mathbb{R}^N$, $a_m$ is a sequence of nonnegative real numbers, and $f$ is in $L^q(\Omega)$, $q>\frac{N}{2}$.
Journal: Nonlinear Analysis, 72 (11), (2010) 4115--4123
Categories: math.AP
Keywords: generalized porous medium equation, singular quasilinear problems, dirichlet boundary value problem, study existence
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2311.03270 [math.AP] (Published 2023-11-06)
Elliptic operators in rough sets, and the Dirichlet problem with boundary data in Hölder spaces
arXiv:2109.10289 [math.AP] (Published 2021-09-21)
Existence, nonexistence and multiplicity of positive solutions for singular quasilinear problems
arXiv:1705.00337 [math.AP] (Published 2017-04-30)
A multi-scale Gaussian beam parametrix for the wave equation: the Dirichlet boundary value problem