arXiv Analytics

Sign in

arXiv:1409.6413 [math.CA]AbstractReferencesReviewsResources

Asymptotic formulas for the gamma function constructed by bivariate means

Zhen-Hang Yang

Published 2014-09-23Version 1

Let $K,M,N$ denote three bivariate means. In the paper, the author prove the asymptotic formulas for the gamma function have the form of% \begin{equation*} \Gamma \left( x+1\right) \thicksim \sqrt{2\pi }M\left( x+\theta,x+1-\theta \right) ^{K\left( x+\epsilon ,x+1-\epsilon \right) }e^{-N\left( x+\sigma ,x+1-\sigma \right) } \end{equation*}% or% \begin{equation*} \Gamma \left( x+1\right) \thicksim \sqrt{2\pi }M\left( x+\theta ,x+\sigma \right) ^{K\left( x+\epsilon ,x+1-\epsilon \right) }e^{-M\left( x+\theta ,x+\sigma \right) } \end{equation*}% as $x\rightarrow \infty $, where $\epsilon ,\theta ,\sigma $ are fixed real numbers. This idea can be extended to the psi and polygamma functions. As examples, some new asymptotic formulas for the gamma function are presented.

Comments: 21 pages
Categories: math.CA
Subjects: 33B15, 26E60, 26D15, 11B83
Related articles: Most relevant | Search more
arXiv:1312.5881 [math.CA] (Published 2013-12-20)
Asymptotic formulas and inequalities for gamma function in terms of tri-gamma function
arXiv:math/0406338 [math.CA] (Published 2004-06-17, updated 2017-10-15)
On Some Sums of Digamma and Polygamma functions - Version (2017) and Review
arXiv:1705.06547 [math.CA] (Published 2017-05-18)
Inequalities for the inverses of the polygamma functions