arXiv:1408.6645 [math.CA]AbstractReferencesReviewsResources
Wasserstein Distance and the Rectifiability of Doubling Measures: Part I
Jonas Azzam, Guy David, Tatiana Toro
Published 2014-08-28Version 1
Let $\mu$ be a doubling measure in $\mathbb{R}^n$. We investigate quantitative relations between the rectifiability of $\mu$ and its distance to flat measures. More precisely, for $x$ in the support $\Sigma$ of $\mu$ and $r > 0$, we introduce a number $\alpha(x,r)\in (0,1]$ that measures, in terms of a variant of the $L^1$-Wasserstein distance, the minimal distance between the restriction of $\mu$ to $B(x,r)$ and a multiple of the Lebesgue measure on an affine subspace that meets $B(x,r/2)$. We show that the set of points of $\Sigma$ where $\int_0^1 \alpha(x,r) \frac{dr}{r} < \infty$ can be decomposed into rectifiable pieces of various dimensions. We obtain additional control on the pieces and the size of $\mu$ when we assume that some Carleson measure estimates hold. Soit $\mu$ une mesure doublante dans $\mathbb{R}^n$. On \'etudie des relations quantifi\'ees entre la rectifiabilit\'e de $\mu$ et la distance entre $\mu$ et les mesures plates. Plus pr\'ecis\'ement, on utilise une variante de la $L^1$-distance de Wasserstein pour d\'efinir, pour $x$ dans le support $\Sigma$ de $\mu$ et $r>0$, un nombre $\alpha(x,r)$ qui mesure la distance minimale entre la restriction de $\mu$ \`a $B(x,r)$ et une mesure de Lebesgue sur un sous-espace affine passant par $B(x,r/2)$. On d\'ecompose l'ensemble des points $x\in \Sigma$ tels que $\int_0^1 \alpha(x,r) \frac{dr}{r} < \infty$ en parties rectifiables de dimensions diverses, et on obtient un meilleur contr\^ole de ces parties et de la taille de $\mu$ quand les $\alpha(x,r)$ v\'erifient certaines conditions de Carleson.