arXiv:1408.2133 [math.RT]AbstractReferencesReviewsResources
The center of $Dist(GL(m|n))$ in positive characteristic
Alexandr N. Zubkov, Frantisek Marko
Published 2014-08-09Version 1
The purpose of this paper is to investigate central elements in distribution algebras $Dist(G)$ of general linear supergroups $G=GL(m|n)$. As an application, we compute explicitly the center of $Dist(GL(1|1))$ and its image under Harish-Chandra homomorphism.
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2304.01038 [math.RT] (Published 2023-04-03)
Representations of $\mathbb{G}_a \rtimes \mathbb{G}_m$ into ${\rm SL}(3, k)$ in positive characteristic
arXiv:1905.01321 [math.RT] (Published 2019-05-03)
Multiplicity one theorem for $(\mathrm{GL}_{n+1},\mathrm{GL}_n)$ over a local field of positive characteristic
arXiv:2406.10201 [math.RT] (Published 2024-06-14)
Representation Theory of General Linear Supergroups in Characteristic 2