arXiv:1408.2018 [math.CA]AbstractReferencesReviewsResources
New moduli of smoothness
K. A. Kopotun, D. Leviatan, I. A. Shevchuk
Published 2014-08-09, updated 2014-09-04Version 2
In this paper, we discuss various properties of the new modulus of smoothness \[ \omega^\varphi_{k,r}(f^{(r)},t)_p := \sup_{0 < h\leq t}\|\mathcal W^r_{kh}(\cdot) \Delta_{h\varphi(\cdot)}^k (f^{(r)},\cdot)\|_{L_p[-1,1]}, \] where $\mathcal W_\delta(x) = \bigl((1-x-\delta\varphi(x)/2) (1+x-\delta\varphi(x)/2)\bigr)^{1/2}. $ Related moduli with more general weights are also considered.
Categories: math.CA
Keywords: smoothness, general weights
Related articles: Most relevant | Search more
arXiv:1907.12788 [math.CA] (Published 2019-07-30)
Properties of moduli of smoothness in $L_p(\mathbb{R}^d)$
arXiv:1408.2017 [math.CA] (Published 2014-08-09)
New moduli of smoothness: weighted DT moduli revisited and applied
arXiv:1910.11719 [math.CA] (Published 2019-10-25)
Polynomial approximation on $C^2$-domains