arXiv Analytics

Sign in

arXiv:1408.2018 [math.CA]AbstractReferencesReviewsResources

New moduli of smoothness

K. A. Kopotun, D. Leviatan, I. A. Shevchuk

Published 2014-08-09, updated 2014-09-04Version 2

In this paper, we discuss various properties of the new modulus of smoothness \[ \omega^\varphi_{k,r}(f^{(r)},t)_p := \sup_{0 < h\leq t}\|\mathcal W^r_{kh}(\cdot) \Delta_{h\varphi(\cdot)}^k (f^{(r)},\cdot)\|_{L_p[-1,1]}, \] where $\mathcal W_\delta(x) = \bigl((1-x-\delta\varphi(x)/2) (1+x-\delta\varphi(x)/2)\bigr)^{1/2}. $ Related moduli with more general weights are also considered.

Categories: math.CA
Subjects: 41A17, 41A10, 42A10, 41A25, 41A27
Related articles: Most relevant | Search more
arXiv:1907.12788 [math.CA] (Published 2019-07-30)
Properties of moduli of smoothness in $L_p(\mathbb{R}^d)$
arXiv:1408.2017 [math.CA] (Published 2014-08-09)
New moduli of smoothness: weighted DT moduli revisited and applied
arXiv:1910.11719 [math.CA] (Published 2019-10-25)
Polynomial approximation on $C^2$-domains