arXiv Analytics

Sign in

arXiv:1407.6275 [math.PR]AbstractReferencesReviewsResources

Mandelbrot cascades on random weighted trees and nonlinear smoothing transforms

Julien Barral, Jacques Peyrière

Published 2014-07-23, updated 2014-12-23Version 2

We consider complex Mandelbrot multiplicative cascades on a random weigh\-ted tree. Under suitable assumptions, this yields a dynamics $\T$ on laws invariant by random weighted means (the so called fixed points of smoothing transformations) and which have a finite moment of order 2. Moreover, we can exhibit two main behaviors: If the weights are conservative, i.e., sum up to~1 almost surely, we find a domain for the initial law $\mu$ such that a non-standard (functional) central limit theorem is valid for the orbit $(\T^n\mu)_{n\ge 0}$ (this completes in a non trivial way our previous result in the case of non-negative Mandelbrot cascades on a regular tree). If the weights are non conservative, we find a domain for the initial law $\mu$ over which $(\T^n\mu)_{n\ge 0}$ converges to the law of a non trivial random variable whose law turns out to be a fixed point of a quadratic smoothing transformation, which naturally extends the usual notion of (linear) smoothing transformation; moreover, this limit law can be built as the limit of a non-negative martingale. Also, the dynamics can be modified to build fixed points of higher degree smoothing transformations.

Comments: 30 pages. This version contains a functional central limit theorem in the quadratic case
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:1007.4509 [math.PR] (Published 2010-07-26, updated 2011-12-09)
Fixed points of inhomogeneous smoothing transforms
arXiv:0710.1985 [math.PR] (Published 2007-10-10)
Dynamics of Mandelbrot Cascades
arXiv:2505.02058 [math.PR] (Published 2025-05-04)
The inversion statistic in derangements and in other permutations with a prescribed number of fixed points