arXiv:1407.4447 [astro-ph.SR]AbstractReferencesReviewsResources
Rapid formation of large dust grains in the luminous supernova SN 2010jl
Christa Gall, Jens Hjorth, Darach Watson, Eli Dwek, Justyn R. Maund, Ori Fox, Giorgos Leloudas, Daniele Malesani, Avril C. Day-Jones
Published 2014-07-16Version 1
The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1-0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae the first few years after explosion. Observations of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40-240 days) formation of dust in its dense circumstellar medium. The wavelength dependent extinction of this dust reveals the presence of very large (> 1 micron) grains, which are resistant to destructive processes. At later times (500-900 days), the near-IR thermal emission shows an accelerated growth in dust mass, marking the transition of the supernova from a circumstellar- to an ejecta-dominated source of dust. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.