arXiv Analytics

Sign in

arXiv:1406.7213 [math.AP]AbstractReferencesReviewsResources

Eventual self-similarity of solutions for the diffusion equation with nonlinear absorption and a point source

Peter V. Gordon, Cyrill B. Muratov

Published 2014-06-27Version 1

This paper is concerned with the transient dynamics described by the solutions of the reaction-diffusion equations in which the reaction term consists of a combination of a superlinear power-law absorption and a time-independent point source. In one space dimension, solutions of these problems with zero initial data are known to approach the stationary solution in an asymptotically self-similar manner. Here we show that this conclusion remains true in two space dimensions, while in three and higher dimensions the same conclusion holds true for all powers of the nonlinearity not exceeding the Serrin critical exponent. The analysis requires dealing with solutions that contain a persistent singularity and involves a variational proof of existence of ultra-singular solutions, a special class of self-similar solutions in the considered problem.

Related articles: Most relevant | Search more
arXiv:0902.0788 [math.AP] (Published 2009-02-04)
On the characterization of asymptotic cases of the diffusion equation with rough coefficients and applications to preconditioning
arXiv:1704.04987 [math.AP] (Published 2017-04-13)
Reconstruction of the Temporal Component in the Source Term of a (Time-Fractional) Diffusion Equation
arXiv:1706.04745 [math.AP] (Published 2017-06-15)
Solvability of interior transmission problem for the diffusion equation