arXiv Analytics

Sign in

arXiv:1406.3913 [math.PR]AbstractReferencesReviewsResources

Absolute continuity and singularity of Palm measures of the Ginibre point process

Hirofumi Osada, Tomoyuki Shirai

Published 2014-06-16, updated 2015-04-05Version 2

We prove a dichotomy between absolute continuity and singularity of the Ginibre point process $\mathsf{G}$ and its reduced Palm measures $\{\mathsf{G}_{\mathbf{x}}, \mathbf{x} \in \mathbb{C}^{\ell}, \ell = 0,1,2\dots\}$, namely, reduced Palm measures $\G_{\mathbf{x}}$ and $\G_{\mathbf{y}}$ for $\mathbf{x} \in \mathbb{C}^{\ell}$ and $\mathbf{y} \in \mathbb{C}^{n}$ are mutually absolutely continuous if and only if $\ell = n$; they are singular each other if and only if $\ell \not= n$. Furthermore, we give an explicit expression of the Radon-Nikodym density $d\G_{\mathbf{x}}/d \G_{\mathbf{y}}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{\ell}$.

Related articles: Most relevant | Search more
arXiv:2005.02276 [math.PR] (Published 2020-05-05)
On Absolute Continuity and Singularity of Multidimensional Diffusions
arXiv:0711.4061 [math.PR] (Published 2007-11-26)
Parking on a Random Tree
arXiv:1004.3185 [math.PR] (Published 2010-04-19, updated 2011-03-09)
Extensions of system signatures to dependent lifetimes: Explicit expressions and interpretations