arXiv Analytics

Sign in

arXiv:1406.2042 [math.GT]AbstractReferencesReviewsResources

On the Characterization Problem of Alexander Polynomials of Closed 3-Manifolds

Karin Alcaraz

Published 2014-06-09Version 1

We give a characterization for the Alexander Polynomials of closed orientable 3-manifolds M with first Betti number 1, as well as some partial results for the characterization problem for M having first Betti number > 1. We first prove an analogue of a theorem of Levine: that the product of an Alexander polynomial of M with a symmetric polynomial in the same number of variables having non 0 trace, is again an Alexander polynomial of a closed orientable 3-manifold. Using the fact that there exists M with Alexander polynomial = 1 for M with first Betti number 1, 2 or 3, we conclude that symmetric polynomials of non 0 trace in 1, 2 or 3 variables are Alexander polynomials of closed orientable 3-manifolds. When the first Betti number of M is 1 we prove that non 0 trace symmetric polynomials are the only ones that can arise. Finally, for M with first Betti number > 3 we prove that the Alexander polynomial can not be 1, implying that for such manifolds not all symmetric polynomials having non 0 trace will occur.

Related articles: Most relevant | Search more
arXiv:1801.06301 [math.GT] (Published 2018-01-19)
A topological interpretation of Viro's $gl(1\vert 1)$-Alexander polynomial of a graph
arXiv:1002.4860 [math.GT] (Published 2010-02-25, updated 2010-06-03)
A state-sum formula for the Alexander polynomial
arXiv:math/0204290 [math.GT] (Published 2002-04-24)
Quantum Relatives of Alexander Polynomial