arXiv Analytics

Sign in

arXiv:1406.0316 [math.AP]AbstractReferencesReviewsResources

Schrödinger type operators with unbounded diffusion and potential terms

Anna Canale, Abdelaziz Rhandi, Cristian Tacelli

Published 2014-06-02Version 1

We prove that the realization $A_p$ in $L^p(\mathbb{R}^N),\,1<p<\infty$, of the Schr\"odinger type operator $A=(1+|x|^{\alpha})\Delta-|x|^{\beta}$ with domain $D(A_p)=\{u\in W^{2,p}(\mathbb{R}^N): Au\in L^p(\mathbb{R}^N)\}$ generates a strongly continuous analytic semigroup provided that $N>2,\,\alpha >2$ and $\beta >\alpha -2$. Moreover this semigroup is consistent, irreducible, immediately compact and ultracontractive.

Related articles: Most relevant | Search more
arXiv:1501.00816 [math.AP] (Published 2015-01-05)
Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms
arXiv:2104.02591 [math.AP] (Published 2021-02-10)
Corrigendum to "Hardy Spaces $H_{\mathcal L}^1({\mathbb R}^n)$ Associated to Schrödinger Type Operators $(-Δ)^2+V^2$" [Houston J. Math 36 (4) (2010), 1067-1095]
arXiv:1711.08954 [math.AP] (Published 2017-11-24)
Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms