arXiv Analytics

Sign in

arXiv:1405.5715 [math.FA]AbstractReferencesReviewsResources

Uniqueness of the maximal ideal of operators on the $\ell_p$-sum of $\ell_\infty^n\ (n\in\mathbb{N})$ for $1<p<\infty$

Tomasz Kania, Niels Jakob Laustsen

Published 2014-05-22Version 1

A recent result of Leung (Proceedings of the American Mathematical Society, to appear) states that the Banach algebra $\mathscr{B}(X)$ of bounded, linear operators on the Banach space $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_\infty^n\bigr)_{\ell_1}$ contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_\infty^n\bigr)_{\ell_p}$ and $X=\bigl(\bigoplus_{n\in\mathbb{N}}\ell_1^n\bigr)_{\ell_p}$ whenever $p\in(1,\infty)$.

Related articles: Most relevant | Search more
arXiv:math/9201219 [math.FA] (Published 1990-11-16)
On quotients of Banach spaces having shrinking unconditional bases
arXiv:math/9508207 [math.FA] (Published 1995-08-01)
Vector-valued Walsh-Paley martingales and geometry of Banach spaces
arXiv:math/0412171 [math.FA] (Published 2004-12-08)
Embedding $\ell_{\infty}$ into the space of all Operators on Certain Banach Spaces