arXiv Analytics

Sign in

arXiv:1405.4883 [quant-ph]AbstractReferencesReviewsResources

Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code

Sergey Bravyi, Martin Suchara, Alexander Vargo

Published 2014-05-19Version 1

We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the 2D surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time $O(n^2)$, where $n$ is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time $O(n\chi^3)$ where $\chi$ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the DMRG method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension $\chi$ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for $\chi\ge 4$.

Related articles: Most relevant | Search more
arXiv:1202.2593 [quant-ph] (Published 2012-02-13, updated 2012-06-04)
Error threshold estimates for surface code with loss of qubits
arXiv:1304.2975 [quant-ph] (Published 2013-04-10, updated 2013-07-31)
Fidelity of the surface code in the presence of a bosonic bath
arXiv:1401.6540 [quant-ph] (Published 2014-01-25, updated 2014-07-30)
Fidelity Threshold of the Surface Code Beyond Single-Qubit Error Models