arXiv:1404.6214 [math.OA]AbstractReferencesReviewsResources
The Haagerup approximation property for von Neumann algebras via quantum Markov semigroups and Dirichlet forms
Published 2014-04-24, updated 2014-09-12Version 2
The Haagerup approximation property for a von Neumann algebra equipped with a faithful normal state $\varphi$ is shown to imply existence of unital, $\varphi$-preserving and KMS-symmetric approximating maps. This is used to obtain a characterisation of the Haagerup approximation property via quantum Markov semigroups (extending the tracial case result due to Jolissaint and Martin) and further via quantum Dirichlet forms.
Comments: 25 pages; v2 adds an example, corrects a few minor points and updates references. The article will appear in the Communications in Mathematical Physics
Categories: math.OA
Keywords: haagerup approximation property, quantum markov semigroups, von neumann algebra, tracial case result, quantum dirichlet forms
Tags: journal article
Related articles: Most relevant | Search more
Haagerup approximation property and positive cones associated with a von Neumann algebra
The von Neumann Algebra of the Canonical Equivalence Relation of the Generalized Thompson Group
arXiv:math/0501278 [math.OA] (Published 2005-01-18)
Stone spectra of von Neumann algebras of type $I_{n}$