arXiv Analytics

Sign in

arXiv:1404.6214 [math.OA]AbstractReferencesReviewsResources

The Haagerup approximation property for von Neumann algebras via quantum Markov semigroups and Dirichlet forms

Martijn Caspers, Adam Skalski

Published 2014-04-24, updated 2014-09-12Version 2

The Haagerup approximation property for a von Neumann algebra equipped with a faithful normal state $\varphi$ is shown to imply existence of unital, $\varphi$-preserving and KMS-symmetric approximating maps. This is used to obtain a characterisation of the Haagerup approximation property via quantum Markov semigroups (extending the tracial case result due to Jolissaint and Martin) and further via quantum Dirichlet forms.

Comments: 25 pages; v2 adds an example, corrects a few minor points and updates references. The article will appear in the Communications in Mathematical Physics
Categories: math.OA
Subjects: 46L10, 46L55
Related articles: Most relevant | Search more
arXiv:1403.3971 [math.OA] (Published 2014-03-16, updated 2014-10-22)
Haagerup approximation property and positive cones associated with a von Neumann algebra
arXiv:math/0403332 [math.OA] (Published 2004-03-22, updated 2004-09-11)
The von Neumann Algebra of the Canonical Equivalence Relation of the Generalized Thompson Group
arXiv:math/0501278 [math.OA] (Published 2005-01-18)
Stone spectra of von Neumann algebras of type $I_{n}$