arXiv Analytics

Sign in

arXiv:1404.2894 [math.GT]AbstractReferencesReviewsResources

Bordered Floer homology and the spectral sequence of a branched double cover II: the spectral sequences agree

Robert Lipshitz, Peter S. Ozsváth, Dylan P. Thurston

Published 2014-04-10, updated 2015-06-15Version 2

Given a link in the three-sphere, Ozsv\'ath and Szab\'o showed that there is a spectral sequence starting at the Khovanov homology of the link and converging to the Heegaard Floer homology of its branched double cover. The aim of this paper is to explicitly calculate this spectral sequence in terms of bordered Floer homology. There are two primary ingredients in this computation: an explicit calculation of bimodules associated to Dehn twists, and a general pairing theorem for polygons. The previous part (arXiv:1011.0499) focuses on computing the bimodules; this part focuses on the pairing theorem for polygons, in order to prove that the spectral sequence constructed in the previous part agrees with the one constructed by Ozsv\'ath and Szab\'o.

Related articles: Most relevant | Search more
arXiv:1011.0499 [math.GT] (Published 2010-11-02, updated 2016-01-11)
Bordered Floer homology and the spectral sequence of a branched double cover I
arXiv:1504.05329 [math.GT] (Published 2015-04-21)
Bordered Floer homology and existence of incompressible tori in homology spheres
arXiv:1005.1248 [math.GT] (Published 2010-05-07, updated 2011-07-31)
Heegaard Floer homology as morphism spaces